Comment pris en compte? - Pour diviser un nombre en facteurs premiers

FONTE ZOOM:

Les étudiants obtiennent souvent des cheveux gris quand il se agit à la décomposition en facteurs premiers des nombres, la question de savoir comment pris en compte la pression sur ses nerfs. Il est simple.

Basic comment factoriser

  • Chaque nombre ne est pas un nombre premier peut être représenté en tant que produit: 6 x 3 est égal à 2, 8 x 64 8, et ainsi de suite. Donc vous pris en principe, en représentant un certain nombre comme un produit.
  • Les nombres premiers sont par des numéros de définition qui ne peuvent être divisés par 1 et le nombre lui-même. Avant de tester maintenant, si 23 est un nombre premier, par le partage de ceux-ci en 1 et 23, chaque nombre est divisible par 1 et lui-même. Laissez la définition précise du premier écart et de prendre la notion familière alternative qui un numéro que vous pouvez partager en rien sans repos.
  • Vous devez soit nombres premiers de 1 à 100 au moins connaître par coeur ou avoir une table de choix à la main pour décider si un nombre est un nombre premier, parce que si on tient compte, vous ne avez pas le temps de tester tous les numéros.

Moyen sûr de factoriser

L'exemple du nombre 2520 Vous pouvez voir comment factoriser.

  1. Divisez ce chiffre par 2520, le plus petit nombre premier connu. Vous obtenez 1260. Donc 2520 = 2 x 1260e
  2. Partager 1260 à nouveau en deux, vous obtenez 630, ce est 2520 = 2 x 2 x 630e
  3. Partager 630 par 2 et vous remarquerez que va 2,560 = 2 x 2 x 2 x 315e
  4. Depuis 315 ne peut être divisé sans reste par 2 Maintenant diviser par la prochaine 3e Premier 315: 3 = 105, ce est 2560 = 2 x 2 x 2 x 3 x 105e
  5. Eh bien 105 est de nouveau divisé par trois et vous obtenez 2560 = 2 x 2 x 2 x 3 x 3 x 35e
  6. Depuis 35 ne est pas divisible par 3, vous devez diviser par 5 et obtenir 2,520 = 2 x 2 x 2 x 3 x 3 x 5 x 7. Avoir en facteurs premiers, parce que tous les numéros de produit sont des nombres premiers. Vous pouvez également écrire avec des exposants. En conséquence, dans 2520 2³ = x 3² x 5 x 7.

Aide divisibilité si vous pondérée

Comme vous l'avez vu dans l'exemple, vous devez diviser. Il est utile si vous connaissez un peu la divisibilité. Cela rend plus facile de décider si un nombre est divisible par certains facteurs premiers:

  • Un nombre est divisible par deux si le dernier chiffre est divisible par deux, à savoir 2, 4, 6, 8, 0.
  • Un nombre est divisible par 3 si la somme des chiffres est divisible par 3.
  • Un nombre est divisible par cinq, si le dernier chiffre est un 5 ou un 0.
  • Bien que 4 et 10 ne sont pas premiers. La connaissance que d'un nombre est divisible par quatre si les deux derniers chiffres sont divisibles par 4 et qu'un nombre est divisible par 10 si un 0 à la fin, vous aide à vous garder.

Astuces au facteur

Vous ne avez pas de démonter directement dans nombres premiers, nous avons également pris en compte lors de la première décomposé en facteurs arbitraires et ensuite décomposée cela. Revenant à l'exemple de 2560:

  1. 2560 a un zéro à la fin, ce est 2520 = 10 x 252e
  2. 256 est un nombre pair, qui est divisible par 2 x 252 = 2 126, de sorte que 2520 = 10 x 2 x 126e
  3. Le 126 est divisible par 2 et 2 x 10 5, de ce qui suit se applique: 2520 = 2 x 5 x 2 x 2 x 63e
  4. 63 est divisible par 3, ce qui donne 3 x 21 et 21 x est égal à 3 7. Ainsi, à partir de 10 x 252 = 2520 = 2 x 5 = 16 x 2 x 2 x 5 x 2 x 2 x 2 = 63 x 5 x 2 x 2 x 3 x 3 x 7
  5. Commandez les numéros selon la taille et vous avez encore 2 520 = 2 x 2 x 2 x 3 x 3 x 5 x 7 = x 2³ 3² x 5 x 7.

La première méthode est très sûr et peut être calculé très têtu dans un modèle, mais il faut souvent beaucoup de temps. La deuxième méthode implique un certain sens du nombre et exige une bonne concentration, de sorte que vous ne oubliez pas de facteurs. Vous pondérée correctement par les deux méthodes.

VOIR AUSSI:
  1.  
  2.  
  3.  
Sans commentaires

Laisser un commentaire

Code De Sécurité