Géométrie analytique: Décrire les ombres - comment cela fonctionne:

FONTE ZOOM:

Évaluée analytiquement vous n'êtes pas droit, pas étonnant que vous incombe donc géométrie analytique ici et là difficile. Juste l'ombre portée est éteint. Mais comment une telle décrire mathématiquement ou même construire?

Décrire l'ombre par la géométrie analytique

  1. Est-il à la géométrie analytique Votre tâche est de décrire une ombre, et il n'y a pas de détails spécifiques de la figure avant, leurs ombres sont destinées à décrire, puis de concevoir le meilleur un système de coordonnées avec l'axe x, y et z, dans lequel vous tirer une figure à deux dimensions.
  2. Maintenant sur votre personnage, vous devez attribuer les coordonnées du point de source de lumière, le chiffre ne peut pas être plus étroite que ce est loin de la source de lumière. De la source de lumière construit, vous tracer une ligne droite "rayons lumineux" à travers votre corps que vous tirez sur le x et y lignes. Les points où les lignes se rencontrent sur les axes, vous devez sélectionner et enfin connecter. Le résultat est une surface qui est à éclore sous forme d'ombre.
  3. La zone d'ombre, vous pouvez enfin décrire et classer un certain nombre de façons. Paramètres possibles pour ce étaient son angle ou même une équation fonctionnelle pour les points de ses bords.
  4. Enfin, il serait recommandé pour une description complète de la manière possible d'établir des équations linéaires, qui décrivent la distance entre les points x et y, où l'ombre a franchi le x et y axe.

Dessinez les ombres que la dilatation centrale

  • Il est appelé un à deux dimensions ombres être reproduite, donc vous devriez être conscient que ce est l'équivalent de l'extension centrale. Qui à son tour peut probablement plus facile à décrire comme homothétie ce qu'il devrait signifier que tout organisme peut être mappé conforme avec elle.
  • Vous est de donner la main un schéma pour la dilatation central, après quoi il se applique de procéder. Z Il faut donc toujours a être donné est un centre d'étirement d'où émanent plusieurs itinéraires. Tant que m est supérieur à 1, ces lignes vont maintenant être prolongés par un facteur m étirage jusqu'à un certain point. Si moins de 1 m, de sorte que, cependant, vous raccourcir les distances par le facteur donné. Un cas récent Voir le résultat, si le facteur d'étirement est égal à 1. Pour répondre en vertu de ces circonstances image et la piste parce que tous les points seront jetés sur lui-même.
  • La dilatation centrale peut bien sûr également être décrite mathématiquement. Ainsi, un point Z du plan du dessin doit être accordée à un nombre et m, qui peut être 0 jamais. La dilatation central Z a maintenant au centre, où m désigne le facteur d'étirage est imagé avec derdie plan du dessin, le pixel d'un point P réel peut être décrit comme P '.
  • Z, P et P 'doit être situé sur une ligne droite. Si m est supérieur à 0, alors l'image P et sont sur la même page; m est inférieure à 0, de sorte qu'ils sont sur face. La longueur de la voie ZPP 'enfin calculée à partir des temps de m de longueur de trajet ZP. Une ligne droite se affiche, l'image est précisément parallèle à la ligne droite tracée en temps réel, est-à-dire, l'image est parallèle à l'image. D'après la description ci-dessus, le résultat final, la notation vectorielle P '= Z + m = mP + Z.
  • Voulez-vous présenter comme un triangle ou décrire les ombres d'un triangle, vous devez étirer Z centre et la PunkteA, B et CFOR être donnée le triangle, où Z dans ce cas, les moyens de source de lumière et le triangle de l'objet dont l'ombre vous voulez mapper. A cet effet, un facteur d'extension doit être spécifiée, par exemple, m = 4.
  • Pour résoudre une telle tâche est initialement se inspirer dans le triangle appartient tirées des trois points de chaque triangle un rayon à Z. Les chemins résultants sont jauge de vous et malzunehmen avec facteur d'étirement 4. En conséquence, les pixels qui sont transférées aux lignes droites et finalement se connecter à un triangle survenir. Les pixels connectés donnent enfin la surface de votre ombre.

Peut-être que vous êtes avec cette connaissance toujours pas un professionnel quand il se agit de la géométrie analytique, mais vous devez au moins maintenant ne ont plus peur de la prochaine classe de mathématiques.

VOIR AUSSI:
  1.  
  2.  
  3.  
Sans commentaires

Laisser un commentaire

Code De Sécurité